Relationships between Ozone and PM during CRPAQS CRPAQS Data Analysis Task 2.7 Betty Pun and Christian Seigneur Atmospheric and Environmental Research, Inc. AAAR Supersites Meeting, Atlanta, GA 8 February 2005 ## Discerning O₃-PM Relationships Hypotheses - Some relationship must exist between O₃ and PM_{2.5} because O₃ and key secondary PM_{2.5} components are governed by the same precursors (NO_x and VOC) - Season-specific relationships: high O₃ predominantly occurs in summer, but high PM_{2.5} occurs in winter - Hourly data for PM_{2.5} and O₃; continuous nitrate and OC data for Angiola, Bakersfield, Fresno downloaded from CRPAQS database (http://www.arb.ca.gov/airways/Datamainternance/default.asp) aer Atmospheric and Environmental Research, Inc. Do High O₃ and PM_{2.5} Occur Together? Fresno, Hourly Data ### 80th Percentile Ozone and PM Levels - (1) Spring: Mar to May; Summer: Jun to Aug; Fall: Sep to Nov; Winter: Dec to Feb - (2) Angiola: February 2000 January 2001; Bakersfield & Fresno: January December 2000 ## Conditional Probabilities (1) - P(high⁽²⁾ O_3 & PM|high PM) = P (high O_3 &PM |high O_3) - Top 20th percentile - Spring: Mar to May; Summer: Jun to Aug; Fall: Sep to Nov; Winter: Dec to Feb ## **Summer Hourly Temporal Profiles** #### O₃ and PM_{2.5} in Bakersfield, summer 2000 # Summer Daily 24-hour Average PM_{2.5} and Maximum 8-hour Average O₃ Time Series Key A: Angiola **B**: Bakersfield F: Fresno ## Winter Average Diurnal Profiles - Peak PM_{2.5} occurs during the day in Angiola (same phase as O₃) - Peak PM_{2.5} occurs at night in Fresno and Bakersfield (out of phase with O₃) ## PM_{2.5} Composition # **Average Nitrate Diurnal Profiles at Three Sites** ## Surface and Aloft Nitrate in Angiola ### Winter OC and EC #### Average OC and EC Concentrations on exceedance days ### Winter OC/EC - High OC/EC ratios indicative of presence of secondary OC - Stronger influence of primary emissions (lower OC/EC) on exceedance days in Angiola ## Conclusions, Summer High O₃ and PM_{2.5} occur more frequently in urban areas due to build-up of both pollutants There is no evidence of day-time urban-scale photochemical production of secondary PM There is no continuous data for the evaluation of contribution of secondary organic compounds ## Conclusions, Winter - High O₃ and PM_{2.5} occur more frequently in Angiola due to day-time peaks in both diurnal profiles - PM_{2.5} dominated by nitrate at Angiola, where day-time production can be important; this may be different from urban areas - Organic compounds (primary) peak at night in Fresno & Bakersfield, driving PM_{2.5}. Influence of primary OC in Angiola increase on exceedance days - Photochemical end products account for more than half of PM_{2.5} in Angiola, but less than half in Bakersfield and Fresno